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Abstract

The advent of low cost Unmanned Aerial vehicles (UAV) having on board imag-

ing devices has led to a new field of aerial imaging. It has various applications

including surveillance, intelligent transport management and security etc. One

such application is to detect and classify automobiles in aerial images. In addition

to general detection issues it poses challenges such as small target size, types of

vehicles, illumination changes due to day and time, weather conditions, occlusions

due to road side plantations, varying terrain, traffic conditions and other man

made structures.

The vehicle detection on aerial images involves two basic tasks i.e., localization

and classification. Combined structures of Convolutional Neural Networks (CNNs)

specially designed to perform both these tasks simultaneously such as, You Only

Look Once (YOLO) architectures, have shown great promise. However, simul-

taneous localization and classification approach by using a single network may

be prone to errors as the optimization is achieved as a whole. In this thesis an

alternate approach is explored, whereby localization and classification are taken

as separate tasks and an attempt is made to achieve best results for each task

individually through ensemble of networks.

YOLO based CNN architectures, are trained on existing aerial vehicle detection

datasets (i.e. VAID and KIT-AIS), their results are analyzed and compared. Based

on the results of these architectures for localization (bounding box estimation)

and classification, two independent ensemble modeling approaches are studied.

The first approach is to combine the bounding box outputs obtained from each

of these networks, and the second ensemble is made on class predictions by these

networks independently. After comparing the results with that of a single YOLO

based network, a novel candidate box and class prediction ensemble method is

proposed to improve the combined performance metrics. This proposed scheme

is also validated on both the above mentioned datasets. The experimental results

shows improvement in both localization and classification performance metrics and
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achieved 99.49% accuracy for classification and mean Average Precision (mAP) of

89.30% on VAID dataset and 98.80% accuracy for classification and mean Average

Precision (mAP) of 56.63% on KIT-AIS dataset, which is decent improvement

compared to the results of a single network.
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Chapter 1

Introduction

1.1 Introduction

Object Detection is a computer vision technique for locating as well as label an

object present in a image or video sequence, so it gives us the bounding box infor-

mation (i.e bounding box co-ordinates) and its respective class. Object detection

has long been a hot topic among researchers but lately it has become popular

since the success of Deep Neural Networks (DNNs) and high computing resources

available today.

An Unmanned Aerial Vehicles (UAVs) according to ICAO is a class of aircraft

that is flown without a on-board pilot, by a operator from ground station. Over

the last decade they have been utilized mostly by military of different countries

particularly for surveillance, being a cost effective solution compared to traditional

man based flights. The development of low cost quad-rotors as shown in figure

1.1, with embedded flight controller and on board high resolution cameras has

surfaced way for a new kind of application called aerial imaging or photography.

On the other hand military drone as shown in figure 1.2, is used particularly for

surveillance and combat. Aerial imaging is basically taking pictures or recording

1
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video from cameras mounted on an air borne platform, which include quad ro-

tors, UAVs etc. Of course, there are certain regulations that vary from country to

country regarding payload, altitude, range etc which must be adhered to. It has

various applications including surveillance, aerial photography, parking manage-

ment, object tracking, security, search and rescue, food and supplies delivery etc.

One of these application is automobile detection in which you can detect number

of vehicles on a highway, manage traffic and send alert to commuters about poten-

tial traffic congestion or alert local area patrol regarding fatal accidents. All this

can be accomplished through one person sitting inside control room and without

having to deploy on ground manpower. Theses UAVs offer characteristics of be-

ing light weight, inexpensive and flexible making it easy for aerial imaging. They

have range from 100m to 1Km and backup time from few minutes to couple of

hours. Though to process all this huge volume of images is a hefty task and this is

where computer vision can come to play. There are several challenges as well when

comes to vehicle detection which are illumination changes, partial shading due to

shadows of trees and other road side obstructions including sign boards, signals

etc, small size of target to be detected, density of objects present and monotonic

appearance.

Figure 1.1: General Purpose Drone
courtesy:nytimes.com/wirecutter/reviews/best-drones/amp/
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Figure 1.2: MQ-9 Reaper Military Drone of USA
courtesy:www.bbc.com/news/world-60047328/

1.2 Aerial Image Data

To understand and solve any problem, first of all you need analyze available data,

and same is the case for a computer vision problem. In the context of vehicle

detection in aerial images, these are sequence of labeled images (i.e defining a box

around the object and its class). There are limited resources available in regard,

and the available resources have issues like imprecise bounding boxes, small image

sizes, and small number of categories available in these of datasets. The popu-

lar datasets in this domain are VAID, VEDAI, COWC, DLR-MVDA, DOTA and

KIT-AIS datasets.

VEDAI dataset published by Jurie [4], contains around 1250 RGB and NIR images,

having resolutions of 512x512 and 1024x1024. It has nine categories and around

3000 objects labelled in one of the nine classes. Annotations describe class, center

point coordinates, direction and four corner point coordinates.
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COWC data is collected over six distinct locations i.e. Toronto Canada, New

Zealand, Germany, Columbus Ohio and Utah United States [5]. The images are

standardized to 15 cm per pixel. The labeled images only mark the center point

of a vehicle with a red dot. It does not provide the category or bounding box

information.

DOTA dataset has around 2800 images collected at resolution of 4000x4000 [6].

It contains 188K objects with different scales, orientations and labeled by quadri-

laterals. This dataset is for general purpose use with only two vehicle categories

out of 15.

KIT-AIS is another similar kind of dataset available for vehicle recognition research

published by researchers of Karlsruhe Institute of Technology, Germany. The

vehicles in this dataset, pose challenges like small, target size, exhibit variability

such as multiple orientations and occlusions etc. The annotation format is YOLO

unlike pascal voc as in VAID dataset. It contains four different types of vehicles

namely car, truck, bus, and minibus. It has approximately 157 images having

resolutions of 1080 x 1920, 4000 x 4000 and 1280 x 720 pixels captured by small

aircraft at an height of about 300m.

VAID (Vehicle Aerial Imaging from Drone) [1], is the latest addition to these

datasets. The authors have gathered over 6,000 aerial images from various loca-

tions in Taiwan under varying lighting and viewing angle situations through hours

of video recording using quad copter with bottom mounted camera. The images in

this dataset were captured by a DJI Mavic Pro drone while it was capturing video

at a height of roughly 90 to 95 meters. The output resolution is 2720x1530 pixels

and about 24 frames per second. A typical vehicle size in the image, which is ap-

proximately 110x45 pixels and has a length of 5m and a width of 2.6m. Later, the

photographs are resized to a resolution of 1137x640, and a sedan is around the size

of 20x40 pixels in the image. Taiwan is a nation in East Asia also called a colony

of China. It is situated at the junction of the East and South China Seas in the

northwest Pacific Ocean, with Japan to the northeast, Philippines to the south,
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and the People’s Republic of China (PRC) to the northwest. Taiwan is known for

technological hub with large scale manufacturing of electronic goods. Taiwan is

also known for mountain ranges dominating the eastern two-thirds and plains in

the western third, where the majority of the country’s densely populated cities are

located. The capital of taiwan is Taipei. Taiwan has a population of 24 Million

and is also among the densely populated countries in the world. This dataset in-

cludes diverse traffic and road conditions and spans ten distinct geographic areas

in southern Taiwan. Images are taken on bright days when there is enough light,

in the afternoon, and in the evening when there is less light for imaging. These

images depict three different geographical locations: a metropolitan area, a sub-

urban area, and a college campus. The images were converted to JPEG format

and contains seven different types of vehicles namely sedans, minibuses, trucks,

pickups, buses, cement trucks, and trailers. The software which was utilized to an-

notate these images is LabelImg tool, and the output format of annotated images

is PASCAL VOC, which includes the corresponding bounding box coordinates as

well as class label. Figure 1.4 shows an image from each vehicle category. VAID

dataset will be used as a benchmark dataset for training of CNN networks for pro-

posed method. Table 1.1 shows the summary of aerial image datasets and figure

1.3 shows few images from each datasets, table 1.2 shows scene wise distribution

of vehicle categories in images for this dataset.

Table 1.1: Breakup of Available Datasets [1]

Title Images Resolution Scale Automobile Size

VEDAI 1250 512x512 25cm 10x20

COWC 53 2000x2000 15cm 24x48

DLR-MVDA 20 5616x3744 13cm 20x40

KIT-AIS 241 300-1800 12.5cm-18cm 15x25

VAID 5985 1137x640 12.5cm 20x40
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Figure 1.3: Few Images from Each Dataset [1]

Figure 1.4: Each Type of Vehicle in VAID Dataset [1]
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Table 1.2: Scene Wise Vehicle Categories Distribution [1]

Images Sedan Minibus Truck Pickup Bus Cement Truck Trailer

University Campus 3527 11385 406 605 611 292 17 36

Urban Area 1118 18349 95 1014 822 225 6 10

Suburb 1610 10596 0 1568 1578 63 168 758

Total 5985 40330 501 3187 3011 580 191 804

1.3 Object Detection Techniques

There are two approaches to this task, the traditional machine learning based

techniques which uses some sort of features like edges, corners, textures, gradient

orientation or colors, and from these features distinct features are selected which

then utilized to train a classifier, the feature extraction is done by machine learning

engineer or data scientist having domain specific knowledge. Then using a sliding

window operator over the image to categorize the positive and negative samples.

Therefore this is a three stage detection system which is computationally extensive

at times.

On the other hand, neural network based approaches, which are frequently based

on convolutional neural networks (CNN), Convolutional neural networks (CNNs),

which have been found to have significant improvement on object detection and

classification in the past few years. These are spatially connected artificial neural

networks (ANN) having many hidden layers, due to which called deep neural

networks. They work by convolving filters of different sizes and generate feature

maps to perform training, sequentially reducing size of feature maps using pooling

layer, until they are small enough to be passed to fully connected layer followed by

softmax function in the end to get final class, as well as they also have a regression

layer used to perform bounding box regression during training and estimating

bounding box coordinates.
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1.4 Ensemble Modeling

Ensemble modeling is used in machine learning that combines the predictions

from multiple models to seek better performance. In object detection ensemble

technique can be applied in two ways, one is to combine the redundant/overlapping

bounding boxes information in a way that the final bounding box is more closer

to its target position. The second way could be used find the correct class of the

object using class prediction ensemble, in this thesis we propose an ensemble based

method for both the detection and classification.

1.5 Thesis Overview

Chapter 1 Presents a brief introduction to aerial imaging in UAVs, its various

applications and challenges involved. The benchmark datasets available in this

domain, and existing techniques for the said task, and how we want to approach

the said task using model ensemble. Chapter 2 The second chapter of this thesis

presents the literature review of existing machine learning, and CNN based ap-

proaches are explained. Afterward, comparative analysis of existing CNN based

architectures by some researchers is also discussed, followed by how to check perfor-

mance of these networks is shown. Research gap analysis and problem statement

are highlighted in light of the literature survey. Chapter 3 The detection ensem-

ble scheme of trained networks is discussed, performed and evaluated along with

results of individual CNN is discussed in detail. Chapter 4 The classification

ensemble of trained networks is discussed, performed and evaluated along with

results of individual CNN is discussed in detail. Chapter 5 The fifth chapter of

this thesis work presents the results and discussion section in which comparison

between known studies is made. Classification and detection performance analysis

of all competing techniques is made, and based on the results a novel ensemble

model for both localization and classification is proposed. Chapter 6 presents the
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conclusion section with the future work. This section concludes that the proposed

technique shows better performance as compared to single CNN network.

1.6 Chapter Summary

This chapter gives brief overview of object detection in aerial images through

UAVs. The available data in this domain and the challenges involved in vehicle

detection are discussed. Ensemble method in object detection is discussed.



Chapter 2

Literature Review

2.1 Classic Machine Learning Based Methods

The traditional machine learning based approaches such as Scale Invariant Fea-

ture Transform (SIFT), Histogram of oriented Gradients (HOG) etc. used for

object detection involves a three stage detection system in which first stage is to

frame candidate regions and locate objects using sliding window, Second stage

involves extracting features from these candidate regions using HOG, SIFT and

third stage is to train a classifier for classification like SVM etc. So, using a sliding

window operator of fixed size and generating features or descriptors, which is a

N-dimensional vector with an associated class. A database is formed based on

these features extracted, data is split into training and testing data, a classifier is

trained on this data like K-Nearest Neighbor (KNN), or a Support Vector Machine

(SVM) etc. This is also referred to as supervised learning. The model generated

is then tested on test data to evaluate performance.

The difficulty with this conventional technique is that computer vision engineer

has to decide which features to choose from, and as the number of classes increases,

feature extraction becomes more difficult. Moreover multiple sliding windows are

10
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required to capture objects of different sizes, also which is computationally exten-

sive and not suitable for real time applications. Similar to the above mentioned

scheme is utilized by Shao [7], here they have used multiple low level features

i.e shape, texture and color followed by training a SVM based classifier. After

training detection is performed by exhaustive search and repetitive detections are

eliminated by non-maximum suppression in post processing step. They have ap-

plied their algorithm on vaihingen dataset and showed promising results. There

are few limitations to Shao’s work, firstly they have used three different kinds of

features i.e Histogram of Oriented Gradient (HoG), Local Binary Pattern (LBF)

and RGB opponent Histogram, although all these low level features but still they

are computation extensive, and second there work is limited to single category i.e

car, so its basically just detection and not classification combined.

Figure 2.1: Process Flowchart HoG [2]

Another approach could be to simply compute optical flow or apply background

subtraction which is based on the subtraction of consecutive frames followed by

applying a threshold and connected components labeling to detect moving vehicles,

and then passing the detected vehicle to a classifier to find its class as shown figure

2.2. To account for the video stabilization issues due to six Degree of freedom

(DOF) motion of a helicopter, a frame by frame video registration scheme using
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lucas Kanade (KLT) based feature tracker to automatically determine control-

point correspondences is proposed [8]. This scheme is although fast limited to

moving vehicles only.

Figure 2.2: Background Subtraction Process [3]

2.2 Modern Deep Learning Based Techniques

The modern deep learning based approach consists of Convolutional Neural Net-

work (CNN’s), which is the current state of art in object detection, there are two

kinds of networks in CNN’s specifically designed to deal with images, the one stage

You Only Look Once (YOLO) based architectures and two stage RCNN based ar-

chitectures, and unlike artificial neural network (ANN) which are fully connected

networks, the CNN’s are spatially connected to the network because of the big

image size like 320x320, 640x640 etc. These networks can have multiple hidden
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layers and can have hundred to millions of weight parameters, and therefore so

called deep neural networks. The RCNN based architectures first extracts region

proposals using an algorithm such as selective search before passing it to the net-

work and therefore it is essentially a image classifier, on the other hand YOLO

based architecture outputs four additional numbers i.e bounding box coordinates

apart from class prediction. CNN work by applying filters of different sizes ex-

tending the full depth of input, it is equivalent to sliding window operation in

conventional machine learning discussed earlier. The resultant outputs are fea-

ture maps which are passed to some activation function usually ReLU activation

function and then combined with pooling layers to reduce their size until they are

small enough to be passed to fully connected network. In this way CNN perform

kind of pattern recognition, and by adding layer after layer we end up learning

hierarchical features, where initial layers are low level features like edges, corners

etc., and later layers having high level features like blobs etc. In the end there

is a full connected layer followed by soft max function to get final class. These

filters have weight parameters that are learned by network during training, The

hierarchical structure of CNN is shown in figure 2.3.

Figure 2.3: Hierarchical Features in Convolutional Neural Network (CNN)
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Girshick in 2015 proposed an improvement in existing R-CNN architecture [9],

to improve training and testing speed while also increasing detection accuracy.

The entire image and a number of object proposals are input into a Fast R-CNN

network. The network creates a convolutional feature map by first processing the

entire image with a number of filters and max pooling layers. A region of interest

(RoI) pooling layer then extracts a fixed-length feature vector from the feature

map for each object proposal. Each feature vector is fed into a series of fully

connected (fc) layers that eventually branch into two sibling output layers, one

layer that outputs four real-valued numbers for each of the K object classes and

another layer that generates softmax probability estimates over K object classes

plus a ”background” class. For one of the K classes, each pair of 4 values represents

the bounding-box coordinates.

Figure 2.4: Fast R-CNN Architecture [9]

Shaoqing and Girshick added the Region Proposal Network (RPN) [10], which

shares full-image convolutional features with the detection network, as yet another

enhancement to the existing RCNN design in 2016. A fully convolutional network

known as an RPN forecasts object bounds and scores at each location at the same

time. The RPN is completely taught to produce excellent region proposals that

are used for detection. By combining RPN and Fast R-CNN into a single network

and utilizing each other’s convolutional features, they have considerably speed

up computation. The RPN can be trained from beginning to end especially for

the job of producing detection proposals, making it a type of fully convolutional



Literature Review 15

network (FCN). RPN’s may be completely taught for the purpose of producing

detection proposals. RPN’s are made to forecast region proposals with a variety of

scales and aspect ratios effectively. They present novel ”anchor” boxes that serve

as references at various scales and aspect ratios as an alternative to conventional

techniques that use pyramids of images.

Figure 2.5: Faster R-CNN Architecture [10]

You Only Look Once (YOLO) architecture was first introduced in 2016 by Joseph

Redmon [11]. Their method is completely different. A single neural network is

used to process the entire image. Bounding boxes and probabilities for each region

are predicted by this network after it divides the image into regions. The predicted

probabilities are used to weight these bounding boxes. Bounding boxes and class

probabilities are predicted by a single neural network from complete images in a

single evaluation. Since the entire detection pipeline consists of a single network,

detection performance can be optimized from beginning to finish. The real-time,

45 frame-per-second image processing speed of the YOLO architecture makes it

incredibly quick.

YOLO make fewer false positive predictions on background, but YOLO makes

more localization mistakes. YOLO picks up very broad representations of things.
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It beats alternative detection strategies. The GoogLeNet model for image classi-

fication served as the model of reference for its network design. 24 convolutional

layers precede 2 completely connected layers in yolo network. They use 1 x 1

reduction layers followed by 3 x 3 convolutional layers. The full network is shown

in Figure 2.6 For evaluating YOLO, final prediction is a 7 Ö 7 Ö 30 tensor.

Figure 2.6: YOLO Architecture [11]

2.3 Comparative Analysis

Some of the researchers have performed comparative analysis of both YOLO and

RCNN based architectures with application to detection in aerial images. In 2017,

Sommer used the DLR 3K Munich Vehicle Aerial Image Dataset and the Vehicle

Detection in Aerial Imagery (VEDAI) dataset to assess the potential of Fast R-

CNN and Faster R-CNN for aerial images [12]. They tested eight various object

proposal techniques, including Selective Search (SS), Edge Boxes (EB), and RPN,

to produce a set of candidate regions. By adjusting the RPN’s anchor boxes and

the output resolution of the final convolutional layer used as a feature map to

account for the lower spatial resolution of the aerial imagery and the resulting
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smaller object sizes, they demonstrated that RPN clearly outperforms all other

proposed methods.

Another researcher compared Faster RCNN with YOLOv3 in context of car de-

tection in aerial images [13]. It is observed that although both algorithms have

high precision rates (99.66% for Faster R-CNN and 99.73% for YOLOv3), when

comparing recall, we find that YOLOv3 performs much better than Faster R-CNN

(79.40% for Faster R-CNN and 99.07% for YOLOv3). YOLOv3 takes 57 ms on

average for one image. The average processing time for each image using Faster

R-CNN is 1.39 seconds. They claimed that YOLO network outperformed faster

RCNN in terms of speed and accuracy and the reason behind it is that there are

couple of improvements in YOLOv3 archietecture. The use of the multi-label clas-

sification, as opposed to the mutually exclusive labeling used in earlier iterations,

is the first advancement made with YOLOv3. It determines the likelihood that an

item belongs to a particular label using a logistic classifier. Previous iterations gen-

erated scores using the soft max function. It substitutes the binary cross-entropy

loss for each label for the general mean square error used in the earlier versions for

the classification loss. The use of various bounding box predictions is the second

enhancement. It links the bounding box anchor with the score value of 1 when that

anchor overlaps a ground truth object more than others. Other anchors that over-

lap the ground truth object by a specified threshold or more are ignored. (0.7 is

used in the implementation). As a result, YOLOv3 gives each ground truth object

a single bounding box point. Utilizing feature pyramid networks for cross-scale

prediction is the third advancement achieved. Boxes are predicted by YOLOv3 at

three distinct scales, from which features are then extracted. A 3-d tensor that

represents bounding box, score, and prediction over classes is the prediction out-

come of the network. YOLO feature extractor, known as Darknet-53, and is so

called because it has 53 layers. It is the fifth enhancement and employs a skip

connections network with 53 layers that was modeled after ResNet. Additionally,

3 x 3 and 1 x 1 convolutional layers are used. It demonstrated state-of-the-art

accuracy while using less floating point calculations and moving more quickly.
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2.4 Ensembling Techniques

As YOLO splits the image into cells so we might get multiple redundant detection

for a test object if the object is spread over multiple cells, and now we have perform

some post processing to filter out the best candidate box among thes redundant

boxes. The candidate box selection method is a crucial part, as its performance will

directly affect the accuracy. Even if the neural network can detect many perfect

bounding boxes, if there is no good candidate box selection method to filter them

out, there will be a phenomenon of missed detection and false detection. Numerous

methods primarily employ non-maximum suppression techniques. Some of the

non-maximum suppression techniques include the conventional NMS, soft NMS

and its variants.

2.5 Non-Maximum Suppression

For a particular object in test image we take and combine all the outputs from each

network and simply pick the highest score bounding box and suppresses the other

bounding boxes with non-maximum scores based on overlapping threshold (IoU),

as described in equation 2.1, and repeat the process for the rest of the objects in

the image. Conventional NMS technique is based on single level decision boundary

and due to which a lot of boxes get eliminated resulting in lower detection accuracy.

Pi = {Pi, iou(Boxk, Boxi) < Mth

0, iou(Boxk, Boxi) ≥ Mth}
(2.1)

where The bounding box Boxi has class probability score Pi. Boxk has the max-

imum class probability of any bounding box. The non-maximum bounding box is

called Boxi. The overlap threshold is Mth. iou(Boxk, Boxi) is an equation that

represents the overlap of two bounding boxes as follows,

iou =
Boxk ∩Boxi

Boxk ∪Boxi

(2.2)
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2.6 Soft Non-Maximum Suppression

In the soft maximum suppression we reduce the detection score of overlapping

candidate boxes gradually by imposing a penalty on them and therefore decreasing

the chance to miss detection as mentioned in Eq. 2.3 and Eq. 2.4. The fixed

threshold method has difficulty to adjust in complicated environments, as can be

observed in the conventional NMS method. As a result, two Soft-NMS approaches

based on penalty factors were suggested in the literature [14]. This approach

steadily decreases the number of candidates by lowering the detection score.

Pi = {Pi, iou(Boxk, Boxi) < Mth

Pi = {Pi ∗ (1− iou(Boxk, Boxi)), iou(Boxk, Boxi) ≥ Mth

(2.3)

Pi = {Pi, iou(Boxk, Boxi) < Mth

Pi = {Pi ∗ e
−iou(Boxk,Boxi)

2

σ , iou(Boxk, Boxi) ≥ Mth

(2.4)

where sigma represents the variance of the Gaussian function.

Equation (2.3) is a linear penalty function, and Equation (2.4) is a Gaussian

penalty function. The Soft-NMS approach simply lowers the detection score of

bounding boxes with high overlap. This technique can, in part, lessen the like-

lihood of missing detection. The bounding box list will abruptly alter when the

overlap degree is close to the threshold value Mth because the linear penalty func-

tion curve is not continuous. The ideal penalty function should be a continu-

ous smooth curve, where the detection score smoothly declines as the bounding

box overlap grows. In light of this, another technique that helps the Soft-NMS

method’s penalty function also called softer NMS.

The Softer NMS proposed in [14], whose penalty function as follows,

Pi = Pi ∗ (1− iou(Boxk, Boxi))
3 (2.5)
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According to the NMS technique and the modified NMS method, the main con-

sideration in determining whether to keep a bounding box is its detection score

exceeds a specific pre-defined threshold or whether its overlap IOU value exceeds

the pre-define threshold. Soft NMS technique performs better than due to the

fact that it reduces the detection score gradually to avoid overlapping boxes being

drastically deleted and causing a miss detection. It is observed that non linear

penalty term introduced as described in Eq. 2.5, definitely improves performance,

because now we are not directly eliminating bounding boxes but picking the high-

est detection box gradually.

2.7 Performance Evaluation

Performance metrics are used to evaluate how if the model is good enough to

be deployed and can be used for the application it is intended for, the model is

definitely evaluated on test data. There are two kinds of performance metrics

used i.e classification and detection. In classification metric tells us how well our

model is recognizing the object of interest. Detection metric tells us how well our

model is localizing our object of interest in terms of bounding box coordinates. In

classification, performance metric is usually accuracy which is proportion of true

positives over sum of all predictions. The other metrics include precision, recall and

F1 score. The precision tell us how many positive predictions are actually positives.

Recall tells us that how many predicted positives are correctly classified. To

evaluate detection Intersection of Union (IOU) is used, which quantifies how close

are the ground truth bounding box and predicted bounding box. IOU measures

the overlap between ground truth box and predicted box over their union.

The predictions made by the detection network is again categorized into four

categories True Positives (TP), False Positives (FP), False Negatives (FN), and

True Negative (TN) although TN is not used as it describes the scenario in which

empty boxes are appropriately identified as being without an object. In this case,

it would be clear that the model would identify hundreds of empty boxes, adding
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Figure 2.7: Intersection of Union

very little to no benefit to our algorithm. Precision, also known as the positive

predictive value, is the likelihood that predicted bounding boxes will match the

actual ground truth boxes. Recall, which is also known as sensitivity, estimates

the likelihood that ground truth objects will be successfully detected. Average

precision (AP), a single number metric that combines precision and recall and

summarizes the Precision-Recall curve by average precision across recall values

from 0 to 1, is used to assess the performance of object detectors. We interpolate

the matching precision for a specific recall value r by taking the maximum precision

at a set of 11 spaced recal points (0, 0.1, 0.2,..,.., 1) where AP averages precision.

Take the maximum accuracy point where its associated recall value is to the right

of r, to put it another way, Mean Average Precision (mAP) averages AP over the

N classes in this situation, where Precision is interpolated at 11 recall levels, hence

the name 11-point interpolated average precision.

2.8 Gap Analysis

The following key areas are identified after review of literature in this domain
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� The conventional machine learning based approaches for object detection

particularly in aerial images relied on either limited to moving objects or

hand crafted feature extraction (i.e HoG, LBP, color, texture, SIFT etc.)

has to be done followed by a sliding window based classifier such as Support

Vector Machine (SVM) to label potential regions in image one by one, this

is computational extensive and thus slow.

� The current state of the art deep learning based approaches are compara-

tively fast but then there is lack of studies exploring separate optimization

for Region of Interest (ROI),and simultaneous localization and classification

approach by using a single CNN may be prone to errors as the optimization

is achieved as a whole in a multi-class scenario.

� There is also lack of comparative analysis between different CNN based ob-

ject detection architectures due to the fact that these networks are still pretty

much new and is a hot topic among researchers.

� There is also limited work done on ensemble modeling techniques to define

a framework, to combine the outputs of multiple object detection networks

together to increase overall accuracy and performance.

2.9 Problem Statement

Conventional machine learning based techniques for object detection in aerial im-

ages exist but are slow and less accurate, while deep learning based approaches

are fast but they are not completely optimized for localization and classification

in a multi-class problem, there is also limited work done on ensembling techniques

to combine the outputs of multiple object detection networks together with the

intent to increase performance.
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2.10 Chapter Summary

This chapter briefly describes the conventional machine learning based and current

state of art deep learning based approaches used in object detection. Then we

described the RCNN and YOLO based CNN architectures used for this task, the

need for non maximum suppression to remove redundant boxes and keep boxes

with highest overlap. We also discussed the ensembling techniques criteria to

evaluate these object detection networks and key performance metrics that are

utilized for assessment of these networks. After literature reviewing, analysis is

made and highlight the ares where gap is present. In the end define problem

statement and how we approach the said problem.



Chapter 3

Localization Ensemble

3.1 Training YOLO Networks

We trained and analyzed multiple YOLO based CNN networks through transfer

learning approach, in which we choose an pre-trained model i.e a model trained on

a similar problem in order to gauge the gained knowledge, change its output and

input layers according our specific requirements i.e image size, no of classes etc.,

and then retrain the model. This way we are using already stored knowledge of a

related problem and applying it another problem and hence given name transfer

learning. Before we can train any network first we have to prepare the dataset

in format that is accepted by the network to be trained, we resize the image

size according to the network input size and re-scale the annotations accordingly.

Therefore format conversion had to be done on the labeled ground truth data to

be able to train these networks. The VAID had annotation in PASCAL VOC

and KIT-AIS dataset had annotations in YOLO, annotation format had to be

converted into YOLO to train these datasets on YOLO architectures, as well

as image resizing to make it compatible with input image size of network to be

trained.

24
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Figure 3.1: PASCAL VOC Annotation in VAID Dataset Image Name 000094

Figure 3.2: YOLO Annotation Format in VAID Dataset Image Name 000094
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The next step before training is to prepare both VAID and KIT-AIS dataset i.e.

to split datasets into training, validation and test data. The test data is set aside

and will be used for evaluating performance our model. The train data is the

data that we will use for training and validation data is the data that will be used

during training to optimize hyper parameters. We performed training on 4 latest

YOLO based CNN architectures i.e (YOLOv5 - YOLOv8).

To make it challenging for CNN network and learn from fewer samples, we have

randomly picked and split the dataset images into 50-50 i.e half of images will be

used for training and rest of the half for testing. The detailed breakup of number

of images and classes in each category is given in table 3.1 and 3.2 below for both

VAID and AIS dataset.

Table 3.1: Train/Test Split of VAID Dataset

Class Train Test Validation

Sedan 9205 18604 9019

Minibus 111 254 106

Truck 681 1466 715

Pickup 682 1420 657

Bus 127 253 126

Cement Truck 38 88 40

Trailer 200 337 175

Each of the above mentioned network was trained for 100 epochs with a batch size

of 4 images, weights initialized to 0.0005 and stochastic gradient descent (SGD)

for optimization as shown in table 3.3 below
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Table 3.2: Train/Test Split of KIT-AIS Dataset

Class Train Test Validation

Car 1170 1838 616

Truck 4 2 4

Bus 50 39 14

Minibus 36 63 20

Table 3.3: Training Configuration

Sr.No Training Parameters Value

1 Epochs 100

2 Batch size 4

3 Optimizer SGD

4 Weight Decay 0.0005

Figure 3.3: Training Results of YOLOv5 on VAID Dataset

The Figure 3.3 and 3.4 shows various graphs that were optimized during training

of YOLOv5 network on both VAID and KIT-AIS dataset (i.e The training and

validation bounding box estimation loss, the training and validation classification

loss, precision and recall metrics and overall mAP).
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Figure 3.4: Training Results of YOLOv5 on KIT-AIS Dataset

3.2 Localization Ensemble

In this chapter the earlier discussed bounding box suppression schemes already

being utilized by CNN’s to eliminate redundant bounding boxes (i.e non-max

suppression, soft NMS etc) are evaluated. The localization ensemble scheme is first

discussed, the two of our proposed methods have been implemented for localization

ensemble, and the results of each of these is then tabulated. Our two datasets i.e

VAID and KIT-AIS dataset are already used to train four YOLO based object

detection architectures, i.e YOLOv5 to YOLOv8. Following key points to be

discussed in this chapter for both datasets are:

� Evaluate localization performance of individual trained network to set a

benchmark for comparison on both datasets.

� Performance of simple NMS technique to benchmark with other bounding

box suppression techniques.

� Performance of simple Soft NMS, Softer NMS is also evaluated.
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� Our proposed localization ensemble schemes are implemented and evaluated

on both datasets.

� Based on comparison we propose the best performing model.

3.2.1 Evaluation Criteria

To evaluate the performance of applied ensembling techniques, evaluation criteria

is defined below:

� Average precision (AP), and Mean Average Precision (mAP) are the terms

used for comparative analysis.

3.2.2 Case 1: Individual Network Performance

We evaluated each of the trained model independently and so that performance

of each network can be compared with the non-max suppression and ensembling

schemes to be utilized and set some benchmark scores for these schemes. Table

3.4 and 3.5 below lists down both detection performance metrics of each network

on VAID and KIT-AIS dataset.

Table 3.4: Detection Metrics of Each Trained Network on VAID Dataset

Class YOLOv5 YOLOv6 YOLOv7 YOLOv8

Sedan 95.59 45.15 92.36 93.60

Minibus 93.98 36.84 81.30 94.74

Truck 85.58 38.10 77.37 82.38

Pickup 85.78 32.61 68.36 74.85

Bus 93.17 42.73 84.68 91.88

Cement Truck 61.74 3.68 14.68 76.60

Trailer 89.45 38.88 81.06 85.98

mAP 86.47 33.99 71.40 85.72
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Table 3.5: Detection Metrics of Each Trained Network on KIT-AIS Dataset

Class YOLOv5 YOLOv6 YOLOv7 YOLOv8

Car 94.70 91.09 96.49 92.53

Truck 3.37 5.50 5.51 9.26

Bus 73.33 71.62 73.19 86.67

Minibus 15.1 8.00 7.42 36.00

mAP 86.47 33.99 71.40 85.72

For the VAID dataset YOLOv5 network is giving better results for most of the

categories excluding minibus and cement truck class, for which YOLOv8 is giving

best results, as far as KIT-AIS dataset is concerned, it can seen that YOLOv8 is

giving better results for most of the classes. The reason for low score of category

Truck is due to fact that it had few samples in training phase. So, each network

is performing well for a particular class but not all the classes, so if could combine

the results of these trained networks it is evident that there will be improvement

in the results.

3.3 Non-Maximum Suppression Techniques

Now that we have our bounding box outputs against a test object from each

model, There are approaches that allows us to keep the best bounding box and

get rid of the redundant bounding boxes. Numerous methods primarily employ

non-maximum suppression techniques. The bounding box selection method is a

crucial component whose effectiveness will have a direct impact on how accurate

the object identification method is. Therefore, the key to successful object detec-

tion is a suitable bounding box selection mechanism, Some of the non-maximum

suppression techniques include the conventional NMS, soft NMS and its variants.

All these algorithms will be applied to results obtained form from each of our

model and evaluated afterwards.
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3.4 Non-Maximum Suppression

To apply NMS on the test image outputs, obtained after passing test images with

each of our trained model for both the datasets, and them perform bounding

box scaling to get final output from each vehicle detection network. Then we

combine all the outputs for a test image and simply pick the highest score bounding

box and suppresses the possible bounding boxes with non-maximum scores based

on overlapping threshold (IoU), as described in equation 3.1, after applying this

algorithm we evaluate the remaining bounding box outputs and its underlying

classes with ground truth annotation of that test image, and repeat the said process

for both datasets. Finally we evaluate detection performance metric as per criteria

defined for analysis in table 3.6 and table 3.7 for both datasets.

Pi = {Pi, iou(Boxk, Boxi) < Mth

0, iou(Boxk, Boxi) ≥ Mth}
(3.1)

Where The bounding box Boxi has class probability score Pi. Boxk has the

maximum class probability of any bounding box. The non-maximum bounding

box is called Boxi. The overlap threshold is Mth taken as 0.5. iou(Boxk, Boxi) is

an equation that represents the overlap of two bounding boxes as follows,

iou =
Boxk ∩Boxi

Boxk ∪Boxi

(3.2)

Table 3.6: Detection Metrics of NMS on KIT-AIS Dataset

Class Average Precision (AP)

Car 74.47

Truck 5.56

Bus 78.06

Minibus 32.00

Mean Average Precision (mAP) 47.52
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Table 3.7: Detection Metrics of NMS on VAID Dataset

Class Average Precision (AP)

Sedan 96.89

Minibus 95.86

Truck 89.19

Pickup 87.58

Bus 93.50

Cement Truck 68.98

Trailer 91.54

Mean Average Precision (mAP) 89.08

3.4.1 Results

The results of conventional NMS technique are on the lower side due to the fact

that it is based on single level decision boundary and due to which a lot of boxes

get eliminated, and also due to fact that object very close to each might also get

deleted causing a miss detection.

3.5 Soft Non-Maximum Suppression

In the soft maximum suppression we reduce the detection score of overlapping

candidate boxes gradually by imposing a penalty on them and therefore decreas-

ing the chance to miss detection as mentioned in Eq. 3.3 and Eq. 3.4. The fixed

threshold method is difficult to adjust to object detection in complicated environ-

ments, as can be observed in the conventional NMS method. As a result, two

Soft-NMS approaches based on penalty factors were suggested in the literature re-

view [14]. This approach steadily decreases the number of candidates by lowering

the detection score. The following equations show two penalty functions to reduce

the detection score,
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Pi = {Pi, iou(Boxk, Boxi) < Mth

Pi = {Pi ∗ (1− iou(Boxk, Boxi)), iou(Boxk, Boxi) ≥ Mth

(3.3)

Pi = Pi ∗ e
−iou(Boxk,Boxi)

2

σ (3.4)

where sigma represents the variance of the Gaussian function.

Equation (3.3) is a linear penalty function, and Equation (3.4) is a Gaussian

penalty function. The Soft-NMS approach simply lowers the detection score of

bounding boxes with high overlap. This technique can, in part, lessen the like-

lihood of missing detection. The bounding box list will abruptly alter when the

overlap degree is close to the threshold value Mth because the linear penalty func-

tion curve is not continuous. The ideal penalty function should be a continuous

smooth curve, where the detection score smoothly declines as the bounding box

overlap grows. In light of this, we review a number of recent techniques that have

helped the Soft-NMS method’s penalty function and results are tabulated in ta-

ble 3.9,3.10 for VAID and table 3.8 and 3.11 for AIS dataset. The Softer NMS

proposed in [14], whose penalty function as follows,

Pi = Pi ∗ (1− iou(Boxk, Boxi))
3 (3.5)

In the NMS technique and the modified NMS method, the main consideration

in determining whether to keep a bounding box is its detection score exceeds a

specific pre-define threshold or whether its overlap IOU value exceeds the pre-

define threshold.

Table 3.8: Detection Metrics of Soft NMS on KIT-AIS Dataset

Class Average Precision (AP)

Car 97.17

Truck 5.51

Bus 93.22

Minibus 39.64

Mean Average Precision (mAP) 58.88
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Table 3.9: Detection Metrics of Soft NMS on VAID Dataset

Class Average Precision (AP)

Sedan 97.20

Minibus 96.37

Truck 90.77

Pickup 88.88

Bus 94.03

CementTruck 78.20

Trailer 92.46

Mean Average Precision (mAP) 91.13

Table 3.10: Detection Metrics of Softer NMS on VAID Dataset

Class Average Precision (AP)

Sedan 97.19

Minibus 96.36

Truck 90.73

Pickup 88.88

Bus 94.02

Cement Truck 78.15

Trailer 92.43

Mean Average Precision (mAP) 91.11
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Table 3.11: Detection Metrics of Softer NMS on KIT-AIS Dataset

Class Average Precision (AP)

Car 97.15

Truck 5.51

Bus 93.22

Minibus 39.64

Mean Average Precision (mAP) 58.90

As observed that soft NMS technique performs better than due to the fact that it

reduces the detection score gradually to avoid overlapping boxes being drastically

deleted and causing a miss detection. It is observed that non linear penalty term

introduced as described in Eq. 3.5, definitely improves performance, because now

we are not directly eliminating bounding boxes but picking the highest detection

box gradually.

3.6 Localization Ensemble 1

3.6.1 Overlapping Bounding Box Ensemble

This is one of the proposed scheme in which the candidate box position is ad-

justed based on weights computed from non maximum boxes, with intent to in-

crease the detection accuracy of the bounding box in Eq 3.8 by computing weights

based on IOU overlap ratio as mentioned in Eq. 3.7. Each candidate box vector

(Box = [x1, y1, x2, y2, s, c]) provides six position details about the object, includ-

ing the object category c, detection score s, and the top left and lower right corners

of the candidate box. Each parameter has a direct impact on the method’s overall
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detection performance. To limit the amount of calculation in this method, can-

didate boxes with detection scores below a defined threshold Mt are first deleted.

The equation is as follows:

Pi = {Pi, P i < Mth

0, P i < Mth}
(3.6)

The bounding box set C = {C1, C2, .., Ci, .., Cn} that has a significant amount

of overlap with the best bounding box is regarded as detecting the same object.

The basic box in this set of bounding boxes is determined by this method using

the bounding box with the highest detection score, Boxk = [x1, y1, x2, y2]. This

bounding box fusion approach gives each bounding box a varied weight since the

likelihood that it contains object information varies. A possible bounding box is

given a larger fusion weight wi because it is thought that the more overlap there

is between the bounding boxes and best box Boxk, the closer it is to the actual

object box. function is defined as follows,

Wi =
iou(Boxk, Boxi)∑n
n=1 iou(Boxk, Boxi)

(3.7)

Each possible bounding box’s weight is calculated by dividing the IOU value be-

tween it and best bounding box Boxk by the sum of the IOU values between all

candidate boxes and best box Boxk. We can create a new candidate box posi-

tion information by weighting and summing the bounding boxes after learning the

weight of each bounding box. The following is the computation process:

Boxk = Boxk −
n∑

n=1

(Boxk − Ci) ∗ wi∑n
n=1wi

(3.8)

The new bounding box’s class probability and class c match those of the best

bounding box Boxk. The best bounding box’s position can be adjusted by the

Overlapping bounding box ensemble method.
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Table 3.12: Detection Metrics of Overlapping Bounding Box Ensemble on
VAID Dataset

Class Average Precision (AP)

Sedan 96.93

Minibus 95.86

Truck 89.26

Pickup 87.42

Bus 93.88

Cement Truck 68.98

Trailer 91.82

Mean Average Precision (mAP) 89.30

Table 3.13: Detection Metrics of Overlapping Bounding Box Ensemble on
KIT-AIS Dataset

Class Average Precision (AP)

Car 97.31

Truck 7.86

Buss 93.33

Minibus 28.00

Mean Average Precision (mAP) 56.63
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3.6.2 Results

As observed that there is some improvement in performance metric due to fact

that now the algorithm has adjusted the position of candidate boxes and made it

more closer towards ground truth, also it has removed the false positive or non

maximum boxes as well.

3.7 Localization Ensemble 2

3.7.1 Class Score Bounding Box Ensemble

This is the second proposed scheme in which the bounding box position is ad-

justed based on weights computed from possible bounding boxes, with intent to

increase the detection accuracy of the said bounding box, Class score based en-

semble algorithm is similar to overlapping bounding box ensemble, in a way it can

shrink or expand the bounding box in the direction of each possible bounding box

as described in Eq 3.10 but the difference here is that it computes weights based

on class probability as mentioned in Eq. 3.9. The Class score based ensemble

method also chooses a new best box from the output of available bounding boxes;

the detection class probability s denotes the likelihood that the new bounding

box contains a genuine object. The bounding box with the most information is

the only one kept using the NMS approach, and the bounding box with the least

information is deleted. The final detection effect will be significantly improved if

we can incorporate the bounding box with little information into the maximum

bounding box. he Class score based ensemble method continues to incorporate the

location data of the best bounding box into the possible bounding box. The possi-

ble bounding box set C = C1, C2, .., Ci, .., Cn that significantly overlaps the best

bounding box is regarded by the Class score based ensemble algorithm as detecting

the same item. The best bounding box Boxk = [x1, y1, x2, y2] is regarded by the

this technique as the fundamental box in the set of possible bounding boxes. The
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Class score based ensemble approach gives each possible bounding box a variable

weight during the bounding box frame fusion procedure because the probability

that the bounding box includes object information varies. The higher the class

probability s, the closer it is thought to be to the genuine object, and as a result,

it is given a higher fusion weight wi.

wi =
Pi∑n
n=1 Pi

(3.9)

Each possible bounding box’s weight is calculated by dividing its individual class

probability by the total of all possible bounding boxes class scores. We may create

a new final bounding box position information by weighing and summing the

possible bounding boxes after learning their weights. The calculation procedure is

as follows:

Boxk = Boxk −
n∑

n=1

(Boxk − Ci) ∗ wi∑n
n=1wi

(3.10)

This final bounding box’s class score s and class c match those of the first best

bounding box Boxk respective class score and category. The adjustment technique

of the Class score based ensemble method is comparable to the overlapping bound-

ing box ensemble approach for the object information that may present in each

bounding box. The position of the best bounding box is compressed or stretched

in every direction by the algorithm. Finally, a new bounding box that completely

envelops the real object is obtained.

Table 3.14: Detection Metrics of Class Score Based Ensemble on KIT-AIS
Dataset

Class Average Precision (AP)

Car 97.30

Truck 7.86

Buss 93.26

Minibus 27.46

Mean Average Precision (mAP) 56.50
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Table 3.15: Detection Metrics of Class Score Based Ensemble on VAID
Dataset

Class Average Precision (AP)

Sedan 96.94

Minibus 95.32

Truck 89.26

Pickup 87.23

Bus 91.48

Cement Truck 68.67

Trailer 91.32

Mean Average Precision (mAP) 88.60

3.7.2 Results

It is pertinent to use the proposed schemes (i.e. Overlapping bounding box en-

semble and Class score based ensemble) due to the reason that these proposed

schemes are now not only adjusting the position of bounding boxes to make them

more accurate.

It can be observed that among the YOLO based networks that we have trained

on VAID dataset, it was observed that YOLOv5 gave the best detection score for

most of the classes except for minibus and cement truck classes, for which YOLOv8

was giving better results, so we take the results of YOLOv5 and benchmark with

both of our localization ensemble schemes on VAID dataset, on the other hand

YOLOv8 give best individual network results, so its results are used to benchmark

with our proposed localization ensemble schemes on KIT-AIS dataset.
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Table 3.16: Detection Metrics of YOLOv5 w.r.t our Ensemble Schemes on
VAID Dataset

Class YOLOv5 OBBE CSBE

Sedan 95.59 96.93 96.94

minibus 93.98 95.86 95.32

truck 85.58 89.26 89.26

pickup 85.78 87.42 87.23

bus 93.17 93.88 91.48

cement truck 61.74 68.98 68.67

trailer 89.45 91.82 91.32

Accuracy 86.47 89.30 88.60

Table 3.17: Detection Metrics of YOLOv8 w.r.t our Ensemble Schemes on
KIT-AIS Dataset

Class YOLOv5 OBBE CSBE

Car 92.53 97.31 95.54

Truck 9.26 7.86 7.86

Bus 86.67 93.33 93.26

Minibus 36.00 28.00 27.46

Accuracy 56.12 56.63 56.50

3.7.3 Results

It can be seen that there is improvement in detection results by applying the

proposed scheme and our localization ensemble increase mean average precision

(mAP) by 2.83% for VAID and 0.51% for KIT-AIS. Therefore we can say that our

proposed schemes can be utilized in scenarios, where a single objection detection

network is not enough to meet the system requirements and so then multiple

detection CNNs can be trained for a particular problem and their results can be

combined using our proposed schemes.

Both localization ensemble algorithms place a strong emphasis on retaining local
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maximum candidate boxes, eliminating redundant boxes, and adjusting the posi-

tion of the maximum candidate box by reusing redundant boxes. By increasing

the amount of real object information in the maximum candidate box, the detec-

tion accuracy can be improved by increasing the overlap between the candidate

box and the real box.

3.8 Chapter Summary

In this chapter, our proposed techniques is tested under different scenarios, which

include conventional NMS, Soft NMS, Softer NMS, overlapping bounding box

ensemble and class score based bounding box ensemble methods. The comparison

of proposed techniques is made between the known studies on both the datasets,

it was observed that our proposed techniques perform fairly well compared to that

of a single CNN.



Chapter 4

Classification Ensemble

In this section, our two classification ensembling techniques will were discussed,

implemented, then the results are compiled and tabulated. Our two datasets

i.e VAID and KIT-AIS dataset is already used to train five YOLO based object

detection architectures, i.e YOLOv5 to YOLOv8.

Following key points to be discussed in this chapter for both datasets are:

� Evaluate classification performance of individual trained network to set a

benchmark for comparison on both datasets.

� Performance of both classification Ensemble techniques is evaluated on both

datasets.

� Based on comparison we propose the best performing model.

4.1 Evaluation Criteria

To evaluate the performance of applied ensembling techniques, evaluation criteria

is defined below:
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� Accuracy, precision, recall and F1 score are the terms used for comparative

analysis.

4.2 Case 1: Individual Network Performance

We evaluate classification performance of each of the trained model independently,

so that performance of each network can be compared with the proposed ensem-

bling schemes, to be utilized to set some benchmark scores for these schemes. Table

4.1 lists classification performance metrics of each network on VAID dataset, and

table 4.2 lists down both detection and classification performance metrics of each

network on KIT-AIS dataset.

Table 4.1: Classification Metrics of Each Trained Network on VAID Dataset

Class YOLOv5 YOLOv6 YOLOv7 YOLOv8

Sedan 98.27 96.10 94.67 96.69

minibus 99.75 99.44 98.95 99.72

truck 98.15 96.00 95.50 97.14

pickup 97.98 95.43 91.98 96.62

bus 99.73 99.23 98.49 99.64

cement truck 99.31 98.94 97.57 99.11

trailer 99.35 98.57 98.03 99.00

Accuracy 98.93 97.67 96.46 98.28

Precision 0.846 0.647 0.583 0.789

Recall 0.846 0.647 0.583 0.789

F1 Score 0.846 0.647 0.583 0.789
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Table 4.2: Classification Metrics of Each Trained Network on KIT-AIS
Dataset

Class YOLOv5 YOLOv6 YOLOv7 YOLOv8

Car 96.57 97.47 96.98 97.98

Truck 99.60 99.60 99.60 99.60

Bus 99.49 98.99 99.70 99.60

Minibus 97.47 97.68 97.48 98.38

Accuracy 98.28 98.43 98.44 98.89

Precision 0.491 0.696 0.483 0.728

Recall 0.455 0.486 0.482 0.573

F1 Score 0.471 0.493 0.483 0.613

We have evaluated classification performance metrics by first finding the corre-

sponding outputs for a object in a test image by IOU of 0.5, and checking the

class prediction with ground truth class, if there was single output then it is taken

as final class, and there were multiple redundant outputs then each of these pre-

diction is considered with respect to ground truth, therefore there is one correct

prediction and rest are mere false positives.

4.3 Classification Ensemble 1: Class ScoreWeighted

Averaging Scheme (SWA)

The first step in performing classification ensemble is to extract and group to-

gether similar predictions against a target object in test image among all the

trained networks, therefore again IOU metric is used to show how much overlap

exists between two bounding boxes, so now we take all these predictions and their

class scores, and combine the class predictions by aggregating class score for each

category and then selecting the class with highest aggregate score as final predic-

tion, hence called class score weighted averaging scheme as shown in figure 4.1
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below. The result of classification ensemble discussed above is shown in table 4.3

and table 4.4 for VAID and KIT-AIS datasets.

Figure 4.1: Block Diagram Classification Ensemble 1

Table 4.3: Ensemble 1 Classification Metrics on VAID Dataset

Class Ensemble 1

Sedan 98.64

minibus 99.74

truck 99.31

pickup 99.16

bus 99.72

cement truck 99.77

trailer 99.74

Accuracy 99.49

Precision 0.870

Recall 0.870

F1 Score 0.870
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Table 4.4: Ensemble 1 Classification Metrics on KIT-AIS Dataset

Class Ensemble 1

Car 97.69

Truck 99.60

Bus 99.70

Minibus 98.19

Accuracy 98.80

Precision 0.735

Recall 0.553

F1 Score 0.594

4.4 Classification Ensemble 2: Class Score and

IOU Weighted Averaging Scheme (SIWA)

The difference between this method and previous is that here we have taken both

class score and IOU ratio before aggregating, so now the sum is made with class

score and IOU ratio multiplied for each class and applying class wise aggregate

hence called class score and IOU weighted averaging scheme as shown in figure

4.2.The logic behind using IOU is that IOU will impose a penalty term on boxes

detected that are away and give more weightage to boxes that are close to test

object. Lets look at an example, suppose we get three bounding boxes with their

respective class and class score for a particular object in a test image, the class

scores are [0.90 0.80 and 0.10] and respective class label are [2 1 5], we compute

the IOU between the test object and these bounding boxes to be [0.60 0.90 0.50],

so now we compute the weights by simply multiplying IOU metrics with class

scores to get [0.54 0.72 0.05], we pick the class corresponding to the highest score

i.e 0.72 and therefore class 1 is selected as the final class which is sedan class in

our case, after score and IOU weighted average scheme. The result of our second

classification ensemble technique is given in table 4.5 for VAID and 4.6 for KIT-AIS

dataset below.
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Figure 4.2: Block Diagram Classification Ensemble 2

Table 4.5: Ensemble 2 Classification Metrics on VAID Dataset

Class Ensemble 2

Sedan 98.68

minibus 99.78

truck 99.33

pickup 99.23

bus 99.78

cement truck 99.71

trailer 99.71

Accuracy 99.46

Precision 0.866

Recall 0.866

F1 Score 0.866
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Table 4.6: Ensemble 2 Classification Metrics on KIT-AIS Dataset

Class Ensemble 2

Car 97.69

Truck 99.60

Bus 99.70

Minibus 98.19

Accuracy 98.79

Precision 0.735

Recall 0.8553

F1 Score 0.594

We can see there is decent improvement in classification metrics by using both

of our proposed ensemble classification methods, due to the reason that now not

only that we are eliminating false positives, but also using the information obtained

from redundant boxes and there corresponding class predictions in correcting final

class prediction.

4.5 Chapter Summary

In this chapter, our proposed classification ensemble techniques is tested under

different scenarios. It was observed that our proposed ensemble techniques fairly

improves upon the classification performance of a single CNN.



Chapter 5

Results and Discussion

5.1 Combined Ensemble Scheme

After analysis of results obtained in chapter 3 and 4 by individually applying

localization and classification ensemble schemes, we propose a combined ensemble

model which utilizes best performing algorithm in both the schemes to get final

output as shown in figure 5.2. This combined ensemble process is essentially

taking outputs from the YOLO based trained networks grouping together similar

detections i.e bounding boxes based on IOU metric and then passing that group

to two separate blocks simultaneously i.e Ensemble for detection and Ensemble for

Classification. The Classification Ensemble block process the class scores and class

label information to find the final class prediction, on the other hand detection

ensemble block estimates the final bounding box, the results from both blocks are

then combined to output the final bounding box and class prediction, also the

pre-processing step in which image and bounding box scaling is done to match the

original image resolution and ground truth annotation is shown figure 5.2 below.

As far as detection is concerned we have chosen overlapping bounding box fusion

based ensemble model which is based on IOU measure between best bounding

box and other associated bounding boxes to compute new position of this best
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bounding box, as it was found to be giving better results compared to other

schemes, for classification we have selected class score based aggregation ensemble

scheme which simply sums the class wise scores from each CNN network for a

particular test object, and picks the class with highest score after aggregating.

Figure 5.1: Preprocessing Step for Ensemble

Figure 5.2: Combined Ensemble Model Block Diagram
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5.2 Detection Performance

Table 5.1 and 5.2 below lists down localization performance metrics on VAID and

KIT-AIS dataset using our combined ensemble model below:

Table 5.1: Detection Metrics on VAID Dataset

Class Average Precision (AP)

Sedan 96.95

Minibus 91.92

Truck 89.25

Pickup 86.75

Bus 93.77

Cement Truck 69.98

Trailer 91.81

Mean Average Precision (mAP) 88.50

Table 5.2: Detection Metrics on KIT-AIS Dataset

Class Average Precision (AP)

Car 97.31

Truck 7.86

Bus 93.33

Minibus 28.00

Mean Average Precision (mAP) 56.63
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It can be observed that our proposed method is a decent improvement compared

to single network result, the reason being that the algorithm is not only retaining

the best bounding box but also using the information of other redundant boxes

to adjust the position of this best bounding box, and after that eliminating these

redundant boxes, which if had been left present, would have resulted in lower

detection precision because of them being false positives. The best results are

obtained for sedan class in VAID dataset due to the fact it had highest numbers

of samples in training data, and cement truck had the minimum score due to

smaller number of samples, same is the case in KIT-AIS dataset where car class

has the highest score and Truck class has the lowest score due to smallest number

of samples.

5.3 Classification Performance

Table 5.3 and 5.4 lists down classification performance metrics on VAID and KIT-

AIS dataset using our classification ensemble method below:

Table 5.3: Classification Metrics on VAID Dataset

Class Accuracy

Sedan 98.64

minibus 99.74

truck 99.31

pickup 99.16

bus 99.72

cement truck 99.77

trailer 99.74

Accuracy 99.49

Precision 0.870

Recall 0.870

F1 Score 0.870
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Table 5.4: Classification Metrics on KIT-AIS Dataset

Class Accuracy

Car 97.69

Truck 99.60

Bus 99.70

Minibus 98.19

Accuracy 98.80

Precision 0.735

Recall 0.578

F1 Score 0.610

It can be observed that our classification ensemble method is giving significant

improvement compared to single network result, main reason being that the al-

gorithm utilizing best performing network by aggregating the class predictions of

redundant boxes against a given object, before eliminating those redundant boxes,

so now the true class having lower class confidence among the other class predic-

tions with higher scores due to lack of network optimization and might not be

taken as final class, still can be taken as final class prediction by averaging the

class predictions among all networks resulting in improved performance.

5.4 Comparison with Known Studies

The publishers of VAID dataset in 2020 had trained and evaluated few CNN based

object detection networks on their dataset [1], and this is the only known study

made in this context of vehicle detection in aerial images, and they found YOLOv4

to give the best detection score, including some other networks as well which

perform fairly well, so we take those results and benchmark with our ensemble

model on the VAID dataset, as we have also used the same train and test split

that was used by authors of VAID, and shown in table 5.5 below.
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Table 5.5: Detection Metrics of YOLOv4 w.r.t Proposed Ensemble Scheme
on VAID

Class YOLOv4 U-Net MobileNetv3 RefineDet Proposed Ensemble Model

Sedan 98.49 67.20 70.46 89.08 96.95

minibus 96.04 94.36 89.02 90.14 91.92

truck 96.44 83.46 64.92 82.21 89.25

pickup 57.25 82.20 75.73 84.59 86.75

bus 97.03 97.84 87.67 90.46 93.77

cement truck 69.94 91.24 90.30 80.68 69.98

trailer 95.45 80.74 78.14 86.64 91.81

mAP 87.23 85.38 79.46 86.26 88.50

Precision 0.90 0.909 0.281 0.242 0.870

Recall 0.92 0.901 0.880 0.964 0.930

F1-Score 0.91 0.905 0.417 0.373 0.892

5.4.1 Discussion

It can be seen that there is considerable improvement in both detection and clas-

sification metrics of our proposed ensemble scheme, therefore we can say that our

proposed schemes can be utilized in scenarios, where a single objection detection

network is not enough to meet the system requirements, and then multiple de-

tection CNNs can be trained for a particular problem and their outputs can be

combined in a post processing step using our proposed method. The advantage of

our proposed scheme is that due to the fact that it is applied in post processing
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step, the said algorithm is limited to a particular CNN network architecture, so

any CNN network can be utilized for the ensemble modeling which are trained

separately, there is no need to retrain the model.

5.5 Chapter Summary

Following key points can be summarized from this chapter:

� A two-stage hierarchical ensemble model approach was then proposed in

which the best bounding box was computed using the best bounding box

and its overlapping redundant boxes in the localization ensemble phase, and

similarly classification ensemble is performed on class predictions associated

each of the overlapping redundant boxes to get final class prediction.

� Performance comparison of above mentioned techniques with known studies

� Detection average precision of our proposed scheme increased by 2.83% and

Classification accuracy of our proposed classification scheme increased by

0.56% for VAID dataset.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this chapter, a complete dissertation is summarized and future research areas

are defined. The aim is to facilitate the research directions of interesting readers

in the field of vehicle detection in aerial images.

In this study two-stage ensemble based approach is proposed to localize and classify

vehicles in aerial images. Firstly multiple YOLO based object detection networks

were trained on VAID and KIT-AIS datasets. The training of different architec-

tures involves pre-processing of dataset images (i.e., resizing, scaling etc.) and

also conversion of its related annotations in different formats. The results for lo-

calization and classification were then thoroughly evaluated. Ensemble techniques

for localization and classification were performed separately, using overlapping

bounding box fusion for localization, and class score weighted averaging scheme

for classification. A two-stage hierarchical ensemble model approach was then

proposed in which the best bounding box was computed using the best bounding

box and its overlapping redundant boxes in the localization ensemble phase, and

similarly classification ensemble is performed on class predictions associated each

of the overlapping redundant boxes to get final class prediction. The results of the
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proposed scheme were then evaluated against the individual network and it was

shown that the proposed system has better performance for both detection and

classification.

Detection average precision of our proposed scheme increased by 2.83% for VAID

dataset and 0.51% for KIT-AIS, and on the other hand classification accuracy of

our proposed classification scheme increased by 0.56% for VAID dataset, which is

a notable improvement in this field.

6.2 Future Work

The images used in the datasets were mostly taken in clear daylight, good weather

conditions and at a lower altitude as well (i.e., 100 to 300 meters), the images

were not always parallel to image axis and sometimes rotated, these are the few

constraints we defined at the beginning of our work, Therefore the proposed scheme

can be implemented and tested for diverse weather conditions and higher altitude

images like satellite images to see its robustness. The proposed architecture can

be implemented on off the shelf AI development kits (i.e NVIDIA jet-son etc.) to

be utilized for real time AI applications. NVIDIA jetson nano is a low cost and

small embedded computer as shown in figure 6.1 that is used to run AI software.

It comes in a development board with other peripherals like on-board camera,

storage, Ethernet, display and USB support. It comes with Quad-core ARM

Cortex-A57 processor and has NVIDIA GPU support to run neural network ar-

chitectures, to train and deploy AI based applications. Orientation information

can also be incorporated by computing the principal orientation first and then

image is rotated in such a way that it becomes parallel with image axis before

applying our proposed algorithm, with the intent that the rectangular bounding
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box perfectly captures the object. Another approach could be to optimize differ-

ent light weight CNN architectures like efficientNet, mobileNet etc., and apply the

proposed ensemble technique to validate the results.

Figure 6.1: NVIDIA Jetson Nano Development Board
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